The influence of locked nucleic acid residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes
نویسندگان
چکیده
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2'-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3' terminal U LNA and 5' terminal LNAs are less stabilizing than interior and other 3' terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2'-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2'-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2'-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2'-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37 degrees C are presented for 2'-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.
منابع مشابه
A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes
Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for c...
متن کاملCellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملNearest neighbor parameters for Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides
Results from optical melting studies of Watson-Crick complementary heteroduplexes formed between 2'-O-methyl RNA and RNA oligonucleotides are used to determine nearest neighbor thermodynamic parameters for predicting the stabilities of such duplexes. The results are consistent with the physical model assumed by the individual nearest neighbor-hydrogen bonding model, which contains terms for hel...
متن کاملThermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides
Thermodynamics provides insights into the influence of modified nucleotide residues on stability of nucleic acids and is crucial for designing duplexes with given properties. In this article, we introduce detailed thermodynamic analysis of RNA duplexes modified with unlocked nucleic acid (UNA) nucleotide residues. We investigate UNA single substitutions as well as model mismatch and dangling en...
متن کاملRecognition of RNA duplexes by chemically modified triplex-forming oligonucleotides
Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005